Heat and cold – getting it, spending it and what if we could be sharing it?

Raise your hand if you’re thermally comfortable right now? Is the weather cold outside? Have you made a cuppa tea in the past hour, had a hot shower or if you’re in a desert climate like myself, have you heard the click and whoosh of air conditioning coming on? Ever think of heating and cooling as a service or something to share?

Let’s look at hot or cold as two nouns for services, in whatever form we get them – air, water, gas. Just like electricity doesn’t come from the wall socket, neither do the hot and the cold – they need to be generated somewhere, brought to us in some form we can handle, they are consumed over some period of time (don’t you wish time is endless after those 24 degrees are reached indoors with outside being 40+ in summers?), and then they are gone – either by convection through walls, windows or by simply opening the doors to the non-cooled space.

In a nutshell, this is the way heating and cooling (or HVAC, if you’re into tech/engineering jargon) work. Linear, right? Can it be circular? What about sharing – can we create a subset of the sharing economy out of it? Maybe there are some solutions towards that idea already?

Should we even look into this and should we care?

Why it matters

Cities – the final frontier. Star Trek may have skipped this part but with 80% of humanity living in cities in not that far of a future, it’s easy to see how, before we set off for Alpha Centauri and boldly go where…, buildings are going to be the subject of a lot of R&D, tech discovery and policy discussion – simply because so many of us will be living and working in buildings. It doesn’t take much research to find basic stats, indicating that up to 90% of the time across the year is spent indoors – meaning buildings again. There’s a whole plethora of things to consider when thinking about buildings, for example see the following image:

pic1

Structure of the buildings sector model (Source: IEA)

The topic has been dissected virtually a million ways with just as many solutions – the question is how it ends up looking today, after all said and done – certainly a lot will be done and global projections indicate that trends are indeed changing, with both contributors to (almost exponential) growth of consumption in the future, as well as measures to reduce the impact of growth through better technology, product performance and building envelope improvements as indicated here:

pic3

Decomposition of global final energy demand in buildings by key contribution (Source: IEA)

The first question is – what if expected savings are not delivered, for whatever objective reason? What if the feasibility studies of individual measures don’t pan out? What if building envelope retrofits never becomes an attractive investment? One risk mitigation measure might be to target primarily the biggest systems in buildings, hoping that innovation and global awareness will drive savings even beyond the ones expected.

This is where heating and cooling in buildings comes into the picture.

When it comes specifically to heating and cooling, focusing on the green (light and dark) and dark blue colours in pie charts in the following picture becomes increasingly interesting. Since 2002, energy demand per person consistently rose to more than 3.3 MWh per person in 2014, as increasing living standards and growing demand for energy services and thermal comfort continued to drive demand for commercial fuels. Globally, space and water heating demand continue to account for the lion’s share of energy consumption in buildings, representing nearly 65% of buildings final energy use in OECD countries and roughly 50% in non‐OECD countries (largely based on traditional use of solid biomass for water heating purposes).

pic1

Buildings energy intensity per capita and final energy use by key regions in 2017 (Source: IEA Technology Perspectives 2017, http://www.iea.org/etp/)

District heating and cooling

Remember economy of scale, marginal costs and associated topics from Economy 101 back in school? It works well for heating and cooling too. The fundamental idea of district heating is to use local fuel or heat resources that would otherwise be wasted, in order to satisfy local customer demands for heating, by using a heat distribution network of pipes. Traditional excess heat resources are combined heat and power (CHP) plants, Waste-to-Energy (WtE) plants, and industrial processes. Established expertise of district heating has paved the way for introduction and deployment of district cooling systems, mainly for covering space cooling demands in buildings. However, this district cooling development has been more recent compared to the development of district heating. District cooling systems are therefore neither as common nor as extensive as district heating systems.

Many a European will have experience in paying bills for district heating. This resident of Dubai can tell you a lot about the Dubai market for district cooling – not least because it’s the biggest in the world (source here), with goals set by the Dubai Supreme Council of Energy of 40% of all buildings to be district cooled by 2030, from current approximate 16%.

A great overview of both district heating and cooling markets has just been published by Sven Werner here, so whoever is interested can read more on it. One interesting outtake from near the end of the paper goes to show this is an increasingly interesting topic for research lately (and you thought thermal comfort a boring topic, right?). If (research) money talks, it’s increasingly talking about heating and cooling for the sustainable future.

investmentgraph

Investments into R&D in heating and cooling in European Union
(Source: Sven Werner, Energy, 2017)

Technological scale-up does work – providing heating and/or cooling at a large, district scale indeed has benefits – for example, for cooling only 0.92 kWh per refrigeration tonne delivered while other cooling methods may require almost double the energy, as per RSB Dubai study available here.

Remember how distributed generation came into play for large utilities? What if district heating/cooling industry is about to face the same challenge? Here goes…

Sharing the heat and the cold

Once upon a time (okay, the 80-ies of last century), electric power systems meant large, vertically integrated utilities that were the omnipresent „mom and dad“ of your electricity supply, usually set-up as monopolies. Renewable energy, if anybody talked about it, meant large hydropower in places which had the predispositions to build them. Things slowly started changing with introduction of the concept of „distributed generation“, largely an area of interest of energy enthusiasts who looked into way of local, building-level energy generation and reducing dependency of a building on the electrical grid.

Enter 2017 – hearing about utilities forming venture capital funds is becoming more and more common.  I’ve listened to a presentation of one of the managers of such a fund based in Dubai – the utilities are seeing the changing landscape, the markets have become free and open worldwide more then ever before, independent power producers are everywhere – the landscape seems to be one where a large electricity supplier is simply not needed. Because your whole neighbourhood will be one big energy hive of generation and consumption, utilizing advanced local trading algorithms together with artificial intelligence to deliver thermal comfort and electricity needed to run your household – completely sourced locally. Throw in the fact that energy can now be stored at increasingly lower prices (while getting my engineering degree, we were told „electricity grid is tricky because whatever energy is produced must be instantly consumed“… well Mr Professor, times have changed). If you think any of this is outlandish, here’s a good example of a company creating localized „energy hives“ – and it’s been well recognized in media and globally – to the point of being invited to testify in front of US House of Representatives recently. Artificial intelligence developers going to discuss advancements with the government… anybody thinking of Skynet and Arnold Schwarzenegger yet?

So, what does this have to do with heating and cooling?

At a Mission Innovation Workshop held in Abu Dhabi, 1-2 November 2017, an interesting discussion developed. Data centres have large demands for cooling, evacuating heat from indoors. At the same time, a nearby industrial plant might need additional heat for its operations. A nearby laundromat is hot when busy – why should you be cold in your apartment and/or pay the full heating bill to the utility company? And what if we have some sort of a district thermal storage, or even use geothermal energy as a heat source or heat sink, depending on climate? Just for a rough idea, here’s what the group I participated in came up with conceptually:

img_4662.jpg

Office building, low-rise multi-family residential and a family home – connected with a heating and cooling network underground, with possible use of geothermal energy as sink/source. Conceptual from Mission Innovation Abu Dhabi workshop, 2 November 2017

Some ideas have been implemented and seem to be working well, but are quite recent and still considered an engineering novelty – for example in UK as shown here.

So, we have prosumers appearing increasingly, with a growing difference between “base” and peak loads in energy supply, including heating and cooling as subsectors. On the other side we have central generation assets that today sit idle some of time, more or less called into use only to meet the peaks – the bulk energy system’s decreasing load factor is a sign of increasing asset underutilization … just like the spare bedroom in a house that’s vacant most of the year (and hello Airbnb).

Are there compelling sharing economy opportunities in the electricity sector? What products or services can be shared in tomorrow’s Smart Grid? Energy efficiency, demand response (demand flexibility), distributed generation such as rooftop solar, distributed storage such as batteries, smart thermostats, heat pumps and more can become the front lines of a sharing economy revolution for the grid – and mini-heat pumps, linked to district-level thermal storage might just well be the next frontier.

Barriers, enablers, future and research

The Mission Innovation workshop provided some insights into barriers and enablers for the concept of shared economy applied to heating and cooling:

Enablers:

  • Many synergies with technological ecosystems of smart grid, distributed prosumers
  • Mitigates the urban heat island effect by reducing heat rejection into the environment in urban centers (heat and/or cool air/water is used where it’s needed instead of being released as waste)
  • End-user would retain ultimate control of the electricity consuming equipment (the heat pump or fan coil)

Barriers:

  • Infrastructure requirements might be high – mini heat pumps, metering equipment, sensors and control software
  • The concept competes with the existing industry of district energy – this may also be an opportunity if district energy providers create synergies with start-ups in the sharing economy arena
  • A technical solution for metering heating and cooling in such a structure would need to be developed
  • Business model and even infrastructure type could be highly dependent on climate and use mix – basically, every situation and combination of buildings would require a slightly customized approach

What’s there to do?

Well first of all if you actually went through all of the above and got the idea, make yourself a well-earned cup of tea. The idea of applying shared economy to heating and cooling, when googled yield about 3 useful results, and even then the content is a stretch.

On the other hand, the group of researchers and some members of industry i sat down with for a discussion along the above lines seem to think that if we plug in some measured numbers into new models, new and hopefully positive conclusions might start to come up. Someone must model feasibility of different configurations, figure out the lifecycle cost and what technologies need to be developed to enable such a system of sharing thermal comfort or heating/cooling energy in general. A pilot project or two would be the next step before we let economists develop a win-win business model.

Something to keep us sustainability leaders more than occupied in the upcoming decades, isn’t it?

Think big – think biggest. Think what would a President of the Universe do.

42? The answer to this is very simple. It was a joke. It had to be a number, an ordinary, smallish number, and I chose that one. Binary representations, base thirteen, Tibetan monks are all complete nonsense. I sat at my desk, stared into the garden and thought ’42 will do’ I typed it out. End of story.

— Douglas Adams

president-of-universe

Douglas Adams must have been ingesting interesting things throughout his day when writing the Hitchhikers guide to the galaxy… Not sure if I’d want the same menu but thank goodness he did, life would be just that little less interesting if he had not.

A mere 7.5 million years of computing and checking to tell one double digit number to this insanely hyper-intelligent pan-dimensional beings who wanted to be know-it-alls… of course it became the center of everything, even if the search changed – from seeking an answer it became a challenge of finding a question.

It didn’t really matter what was said. It was who said it, either in the book or in reality where we’re talking about the book. Because – well read… it is the hyper-intelligent pan-dimensional being asking, it is 7.5 million years of calculations, I mean IT MUST MEAN SOMETHING RIGHT?. Sure, means a great joke.

I’m Croatian. In our educational system at age 14 you choose which high school to go to – general gymnasium or something more specific like technical school I chose (nobody told me that I’d be stuck among boys only for 4 yeas…). Then at 18 you choose which university to go to and for the next 5 years you sweat and curse that choice until the relief of getting a diploma. What then? Are you ready to do anything? Hells no, you just learn that the school just started, you just happen to go into it with some important papers.

In these musings around the age of 20, I found myself one idle afternoon in a bar thinking – how do you make all the right choices – how do you become the greatest – what does the greatest guy ever do – what school did he go to – how does he behave – what does he eat and drink… hey wait a moment, who would the greatest guy ever be? Don’t think past, or near or even far future, think Star Wars and Start Trek and multidimensional and alternative, Back-to-the-Future (all 3!) timelines… of course it would be – The President Of the Universe.

How do I become the president of the Universe?

Little did I know, diving into what was my first ever box of books ordered from Amazon, that there’s a writer who invented Zaphod Beeblebrox, president of the Imperial Galactic Government.

Typing this out in Word and seeing I’m almost a full page deep and considering making a joke about how I ended up working in a government and, for those who know me, whether the above will be interpreted as ramblings of a mad futuremegalomaniac, maybe it’s time to put my initial question here – how would the greatest man ever (President of The Universe of course) lead? I do study sustainability leadership, so might as well move away from the naturally more comfortable technical aspects of sustainability to this fickle world of humans and who they follow and how and why.

Fast forward few dozen books on leadership, about a dozen on psychology, one hopeless attempt at getting into sociology and anthropology and finally landing into the School of Common Sense (a bit wiser after all those reads earlier), it’s pretty easy to make quite a Hitchhiker’s conclusion:

DON’T PANIC. Also, have a towel.

OK now, seriously, first don’t panic.

Pretty much all you do is OK it seems – not because there’s an absolute OK in this world, but because there’s always someone who finds whatever you do or say, as long as it’s said with conviction, as perfectly OK, regardless of if it’s totally mad.

I mean just look at this – 12 totally different styles of leadership. Think of your favorite dictator – how many people would call him a leader (forget who’d call the same guy insane for the moment)? Now think about likes of Obama, Kennedy, think Einstein or Newton, Shakespeare (let’s stay away from spirituality/religion here but you get the point)… all leaders, or thought leaders… and all so different. What’s that common strand that thousands of books and courses out there haven’t yet covered? What should we do with all those silly talks of whether a leader is born or built (I say neither)?

Here’s a thought – it’s about how you travel this planet, in mind and body. It’s about consistency and being true to first and foremost yourself – with that, it’s then just a matter of finding the group of people who’ll just go along with it.

Not what your values are, what style of communication you use, race, religion, personal history, CV, diploma, marital status, gender, salary, property, how much you can lift in a gym or hairstyle. All that immense diversity just brings me back to a mantra I repeat to myself often, stealing shamelessly from Shakespeare:

All the world’s a stage,
And all the men and women merely players;
They have their exits and their entrances,
And one man in his time plays many parts.

In a theater, being the star means having your role, having a role means other people expect you to fulfill it – so if you’re fulfilling your own role naturally and knowing yourself and your abilities, limits and set of values… well… all eyes on you.

So how does a leader preach sustainability? Does he live sustainably? Or is it similar to those interesting rumors that top management of tobacco companies are non-smokers? Something to think about.

Remember Al Gore? Well dang it… seems he doesn’t really practice what he preaches when it comes to his own house.

Do Greenpeace guys live in caves? Or do they want us to, regardless of what tech is coming our way to make life better and cleaner? And are they looking wide enough? Sure, they agree with solar, but I could not find one reference to see their position on way materials are extracted and used to make the solar panels they promote. Oh and yeah, I think they cherish their iPhones, the Internet and so on, many of which would not really come around if we stop technology altogether, would they?

Do oil & gas guys really not care about environment at all? Sure they do, if they can make a buck on it – and they will. Good for us. Not so good for those who are adamant that oil & gas are villains. There’s a reason Shell went from being an oil company to being an energy company. I’ll go check the number of Cambridge graduates there a bit later.

That’s just some preset paradigms that came to mind when typing this all up, simply to say – there is no recipe for this.

Remember Zaphod Beeblebrox? In lieu of another President of the Universe, he was pretty much a deviant drama queen, not that much unlike today’s politicians. Dang it, another role model busted.

Seems we’ll have to expose ourselves to free thinking, something that Erich Fromm, a popular philosopher for my father’s generation, had a lot to say about – we’re simply afraid of it because we don’t know what to do with it – once we finally have it, we run back to the familiar arms of non-freedom… get a job, find a worry, find something to criticize or simply some other sort of thing to occupy our time and thoughts.

So what do to?

“If other people do not understand our behavior—so what? Their request that we must only do what they understand is an attempt to dictate to us. If this is being “asocial” or “irrational” in their eyes, so be it. Mostly they resent our freedom and our courage to be ourselves. We owe nobody an explanation or an accounting, as long as our acts do not hurt or infringe on them. How many lives have been ruined by this need to “explain,” which usually implies that the explanation be “understood,” i.e. approved. Let your deeds be judged, and from your deeds, your real intentions, but know that a free person owes an explanation only to himself—to his reason and his conscience—and to the few who may have a justified claim for explanation.”

― Erich Fromm, The Art of Being

Somewhere in there is the answer to how to become a President of the Universe. Key is in the universe – your universe. The one involving all the cool people around you, people you like and love, regardless of how close they stay in your circle of life.

Yeah I gotta end predictably here. So Long, and Thanks for All the blog reading, fish. I literally have a flight to catch.

 

Dubai Airport, 9 November 2017, about 15 minutes until boarding  EK514 to Delhi